Thermal de Broglie wavelength ============================= The thermal de Broglie wavelength can be roughly described as the average de Broglie wavelength of particles in an ideal gas at a specified temperature. When compared to average inter-particle spacing in the gas, it can be used to tell if the gas can be considered to be a classical or Maxwell-Boltzmann gas, in which case the thermal wavelength must be much smaller than the average inter-particle spacing. Otherwise, quantum effects must be taken into account. **Notation:** #. :math:`\hbar` (:code:`hbar`) is :attr:`~symplyphysics.quantities.hbar`. #. :math:`k_\text{B}` (:code:`k_B`) is :attr:`~symplyphysics.quantities.boltzmann_constant`. **Links:** #. `Wikipedia, see last formula in paragraph `__. .. py:currentmodule:: symplyphysics.definitions.thermal_de_broglie_wavelength .. py:data:: thermal_wavelength Thermal de Broglie :attr:`~symplyphysics.symbols.classical_mechanics.wavelength` of the gas. Symbol: :code:`lambda` Latex: :math:`\lambda` Dimension: :code:`length` .. py:data:: mass :attr:`~symplyphysics.symbols.basic.mass` of a single gas particle. Symbol: :code:`m` Latex: :math:`m` Dimension: :code:`mass` .. py:data:: temperature :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the gas. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`temperature` .. py:data:: definition :code:`lambda = hbar * sqrt(2 * pi / (m * k_B * T))` Latex: .. math:: \lambda = \hbar \sqrt{\frac{2 \pi}{m k_\text{B} T}}