Damped harmonic oscillator equation =================================== Assuming there is a damping force acting on an oscillating body that is linearly proportional to the body's velocity, we can write a differential equation for the body's position. We're assuming the body only moves in one direction. **Links:** #. `Physics LibreTexts, similar equation 15.6.2 `__. .. py:currentmodule:: symplyphysics.definitions.damped_harmonic_oscillator_equation .. py:data:: time :attr:`~symplyphysics.symbols.basic.time`. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: displacement Displacement of the oscillating body as a function of time. See :attr:`~symplyphysics.symbols.classical_mechanics.euclidean_distance`. Symbol: :code:`x(t)` Latex: :math:`x{\left(t \right)}` Dimension: :code:`length` .. py:data:: undamped_angular_frequency Undamped :attr:`~symplyphysics.symbols.classical_mechanics.angular_frequency` of the oscillator. Symbol: :code:`w` Latex: :math:`\omega` Dimension: :code:`angle/time` .. py:data:: damping_ratio :attr:`~symplyphysics.symbols.classical_mechanics.damping_ratio`, which critically determines the behavior of the system. Symbol: :code:`zeta` Latex: :math:`\zeta` Dimension: :code:`dimensionless` .. py:data:: definition :code:`Derivative(x(t), (t, 2)) + 2 * zeta * w * Derivative(x(t), t) + w^2 * x(t) = 0` Latex: .. math:: \frac{d^{2}}{d t^{2}} x{\left(t \right)} + 2 \zeta \omega \frac{d}{d t} x{\left(t \right)} + \omega^{2} x{\left(t \right)} = 0