Linear displacement is angular displacement cross radius ======================================================== Assuming a body rotating around a fixed axis, the vector of its linear displacement can be expressed as the cross product of the pseudovector of angular displacement and the radius vector of rotation. **Conditions:** #. The axis is fixed. #. Angular displacement pseudovector and radius vector must be orthogonal to one another. **Links:** #. `Physics LibreTexts, formula 11.1.4 `__. .. py:currentmodule:: symplyphysics.classical_mechanics.kinematics.rotational_motion.displacement_is_angular_displacement_cross_radius .. py:data:: linear_displacement Vector of the body's linear displacement. See :attr:`~symplyphysics.symbols.classical_mechanics.distance`. Symbol: :code:`s` Latex: :math:`{\vec s}` Dimension: :code:`length` .. py:data:: angular_displacement Pseudovector of the body's angular displacement. See :attr:`~symplyphysics.symbols.classical_mechanics.angular_distance`. It is parallel to the rotation axis. Symbol: :code:`theta` Latex: :math:`{\vec \theta}` Dimension: :code:`angle` .. py:data:: rotation_radius_vector Radius vector pointing away from the rotation axis perpendicular to it. See :attr:`~symplyphysics.symbols.classical_mechanics.distance_to_axis`. Symbol: :code:`r` Latex: :math:`{\vec r}` Dimension: :code:`length` .. py:data:: law :code:`s = cross(theta, r)` Latex: .. math:: {\vec s} = \left[ {\vec \theta}, {\vec r} \right]