Acceleration due to non-uniform rotation ======================================== Imagine two reference frames, one of which is fixed (:math:`S`) and the other is moving (:math:`S'`). When :math:`S'` rotates around :math:`S` in a non-uniform way, the acceleration of some body :math:`B` in :math:`S` has a component corresponding to that non-uniform rotation of :math:`S'`. It is part of the transfer acceleration of body :math:`B` in :math:`S`. **Notation:** #. :math:`\left[ \vec a, \vec b \right]` (:code:`cross(a, b)`) is vector product of :math:`\vec a` and :math:`\vec b`. **Links:** #. `Wikipedia `__. .. TODO find English link .. py:currentmodule:: symplyphysics.classical_mechanics.kinematics.relative_motion.acceleration_due_to_non_uniform_rotation .. py:data:: non_uniform_rotation_acceleration Vector of :attr:`~symplyphysics.symbols.classical_mechanics.acceleration` due to non-uniform rotation of :math:`S'` relative to :math:`S`. Symbol: :code:`a_rot` Latex: :math:`{\vec a}_\text{rot}` Dimension: :code:`acceleration` .. py:data:: time :attr:`~symplyphysics.symbols.basic.time`. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: angular_velocity Pseudovector of the body's angular velocity as a function of :attr:`~time`. See :attr:`~symplyphysics.symbols.classical_mechanics.angular_speed`. Symbol: :code:`w(t)` Latex: :math:`{\vec \omega} \left( t \right)` Dimension: :code:`angle/time` .. py:data:: position_vector The body's position vector. See :attr:`~symplyphysics.symbols.classical_mechanics.distance_to_origin`. Symbol: :code:`r` Latex: :math:`{\vec r}` Dimension: :code:`length` .. py:data:: law :code:`a_rot = cross(Derivative(w(t), t), r)` Latex: .. math:: {\vec a}_\text{rot} = \left[ \frac{d}{d t} {\vec \omega} \left( t \right), {\vec r} \right]