Center of mass for a system of particles ======================================== The center of mass (com) of a system of particles is a unique point at any given time where the sum of weighted relative positions of the distributed mass is zero. **Links:** #. `Wikipedia, second formula `__. .. py:currentmodule:: symplyphysics.classical_mechanics.kinematics.centers.center_of_mass_for_system_of_particles .. py:data:: center_of_mass Vector of the system's center of mass (COM). Symbol: :code:`r_com` Latex: :math:`{\vec r}_\text{COM}` Dimension: :code:`length` .. py:data:: position_vector Position vector of the :math:`i`-th body. See :attr:`~symplyphysics.symbols.classical_mechanics.distance_to_origin`. Symbol: :code:`r[i]` Latex: :math:`{{\vec r}}_{i}` Dimension: :code:`length` .. py:data:: mass :attr:`~symplyphysics.symbols.basic.mass` of the :math:`i`-th body. Symbol: :code:`m[i]` Latex: :math:`{m}_{i}` Dimension: :code:`mass` .. py:data:: law :code:`r_com = Sum(m[i] * r[i], i) * Sum(m[i], i)^(-1)` .. For the Latex code printer: TODO: fix indexed vector symbols TODO: add parenthesis around IndexedSum when it is the base of an exponent Latex: .. math:: {\vec r}_\text{COM} = \frac{\sum_i m_i {\vec r}_i}{\sum_i m_i}